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Motivation

I Semidefinite programming is a key tool in applied mathematics, machine learning, etc. Current algorithms for SDPs do not
scale to large problems. Gradient descent methods repeatedly shown to be highly effective for large scale machine
learning problems. Can first order algorithms be effective for SDPs?

I Burer and Monterio (2003) propose general schemes for attacking SDPs with factored, nonconvex approaches, with some
empirical support.

I Candès et al. (2015) develop a gradient descent procedure for phase retrieval, minimizing a nonconvex objective to
recover complex vector from squared magnitudes of linear measurements.

I We show how similar ideas can work for rank minimization and solving certain SDPs.

Rank Minimization and SDP

min
X∈Rn×p

rank(X )

subject to A(X ) = b

I Nonconvex and NP-hard in general
I Closely related to family of SDPs if X is semidefinite. With sufficient measurements,

min rank(X ) ≡ min ‖X‖∗ ≡ tr(X ).

Problem

Suppose X ? is semidefinite and of rank r . Let bi = tr(AiX ?) where Ai is GOE symmetric matrix

Ajk ∼

{
N (0,1) j 6= k
N (0,2) j = k

Goal is to solve
min
X�0

rank(X )

subject to tr(AiX ) = bi, i = 1, . . . ,m

Approach

Writing X = ZZ>, attempt to minimize objective function

f (Z ) =
1

4m

m∑
i=1

(
tr(Z>AiZ )− bi

)2

Important property is

E

(
1
m

m∑
i=1

biAi

)
= 2X ?

Initialize with spectral decomposition of 1
2m

∑m
i=1 biAi and then

apply gradient descent.
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Example: X ? ∈ R2×2 is rank-1 and Z ∈ R2. True
vector is Z ? = [1,1]>. Both Z ? and −Z ? are mini-
mizers.

Algorithm

Input: {Ai,bi}m
i=1, r , µ

Initialization
Let (v1, λ1), . . . , (vr , λr) to the top r eigenpairs of 1

m

∑m
i=1 biAi

Z = [z1, . . . , zr ] where zs =
√
|λs|
2 · vs, s ∈ [r ]

Repeat

∇f (Z ) = 1
m

m∑
i=1

(
tr(Z>AiZ )− bi

)
AiZ

Z ← Z − µ∑r
s=1 |λs|/2

∇f (Z )

until convergence

Output: X̂ = ZZ> iteration
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Linear convergence of the gradient scheme,
where X ? ∈ R200×200 has rank 2. The distance
metric is given below.

Our results

Define the distance function
d(Z ,Z ?) = min

orthogonal U
‖Z − Z ?U‖F

Let κ = σ1/σr denote the condition number of X ?. There exist universal constants c0 and c1 such that if m ≥ c0κ
2r3n log n,

with high probability the initialization Z 0 satisfies

d(Z 0,Z ?) ≤
√

3
16
σr

Moreover, using constant step size µ/ ‖Z ?‖2
F with µ ≤ c1

κn
, the k th iteration of the algorithm satisfies

d(Z k ,Z ?) ≤
√

3
16
σr

(
1− µ

12κr

)k/2

with high probability.

Proof structure

We establish a local regularity condition similar to Nesterov’s conditions:

〈∇f (Z ),Z −Z 〉 ≥ c′1
∥∥∥Z −Z

∥∥∥2

F
+ c′2 ‖∇f (Z )‖2

F .

To demonstrate this, we show that the objective f satisfies a local curvature condition

〈∇f (Z ),Z −Z 〉 ≥ C1

∥∥∥Z −Z
∥∥∥2

F
+
∥∥∥(Z −Z )>Z

∥∥∥2

F

and a local smoothness condition
‖∇f (Z )‖2

F ≥ C2

∥∥∥Z −Z
∥∥∥2

F
+ C3

∥∥∥(Z −Z )>Z
∥∥∥2

F

where Z = arg minsolution Z̃

∥∥∥Z − Z̃
∥∥∥

F
.

We exploit concentration around the mean of the Hessian ∇2f (Z ) and matrices 1
m

∑m
i=1(u

>Aiu)Ai.

Remark: We require O(r2n log n) samples for the regularity conditions to hold with high probability. For the initialization to
be sufficiently close, we require O(r3n log n) samples. Independent work of Tu et al. (2015) improves this to O(r2n) overall.

Simulation

We compare against the Singular Value Projection algorithm (SVP) of Jain et al. (2010) and nuclear norm relaxation of
Recht et al. (2009).

I Runtime:
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Left: 400x400 random rank-2 X ?, m = 6n, dense Ai. Right: 600x600 random rank-2 X ?, m = 7n, sparse Ai.

Let ρ denote the density of Ai. We summarize the per-iteration complexity:

Method Complexity
nuclear norm (ADMM) O(mn2ρ + m2 + n3)

gradient descent O(mn2ρ) + 2n2r
SVP O(mn2ρ + n2r )

I Sample complexity:

m/n
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We conjecture the sample complexity bound could be further improved to be O(rn).

Future directions

I Many possibilities for realizing potential of factored gradient descent approaches to SDPs. Such techniques may be
effective for a much wider class of SDPs.

I Explore theory for sparse or structured sensing matrices, non-random designs.
I Lower and optimal O(nr ) complexity.
I Purely first order algorithms (no SVDs).
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