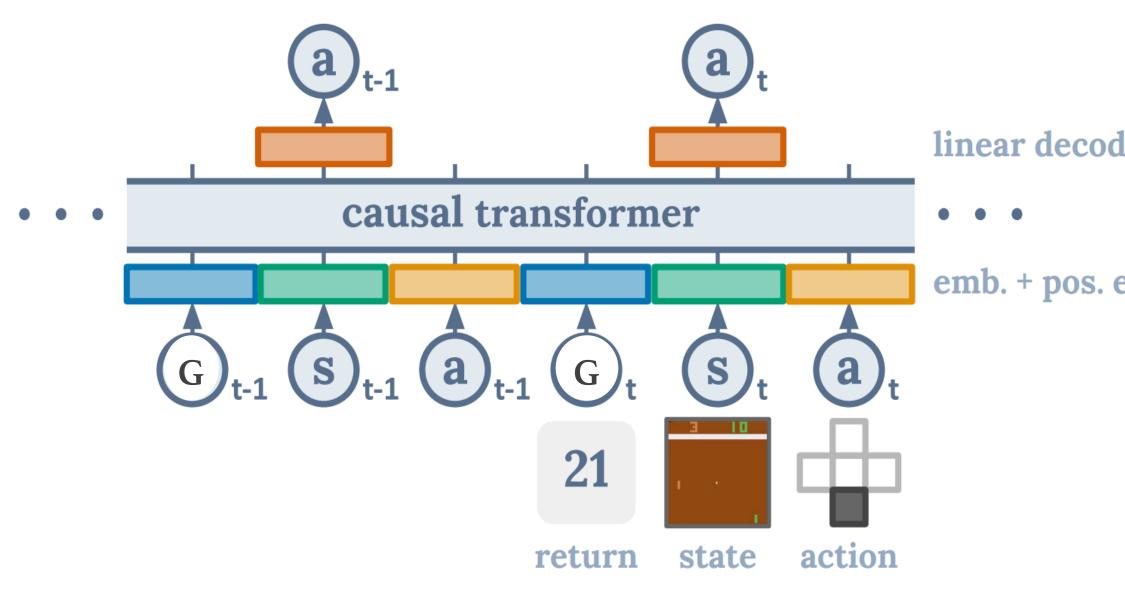
Online Decision Transformer

Qinqing Zheng, Amy Zhang, Aditya Grover

Introduction

Recent works such as Decision Transformer (DT, Chen et al. 20 shows that offline RL problems can be casted as sequence mod problems and solved by supervised learning methods.

The performance of offline RL however is bottlenecked by the dataset properties and often requires online finetuning for bes⁻ results.


We propose Online Decision Transformers (ODT), an RL algorit based on supervised sequence modeling that blends offline pretraining with online finetuning in a unified framework.

ODT enables stable online learning while retraining the simplicity sequence modeling.

Base Model

Decision Transformer (Chen et al. 2021) models a trajectory τ as (RTG, state, action) sequences.

RTG (return-to-go) $g_t = \sum_{t'=t}^{|\tau|} r_{t'}$

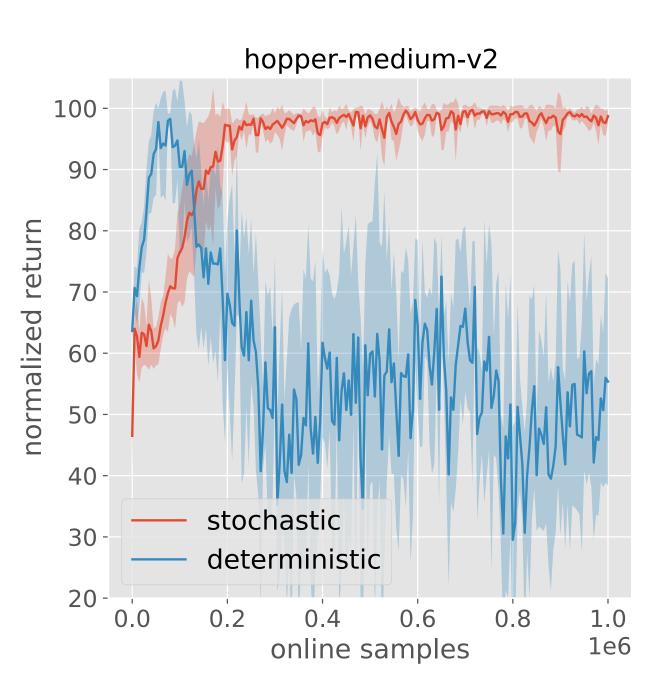
DT architecture (Chen et al. 2021)

DT generates return-conditioned policies.

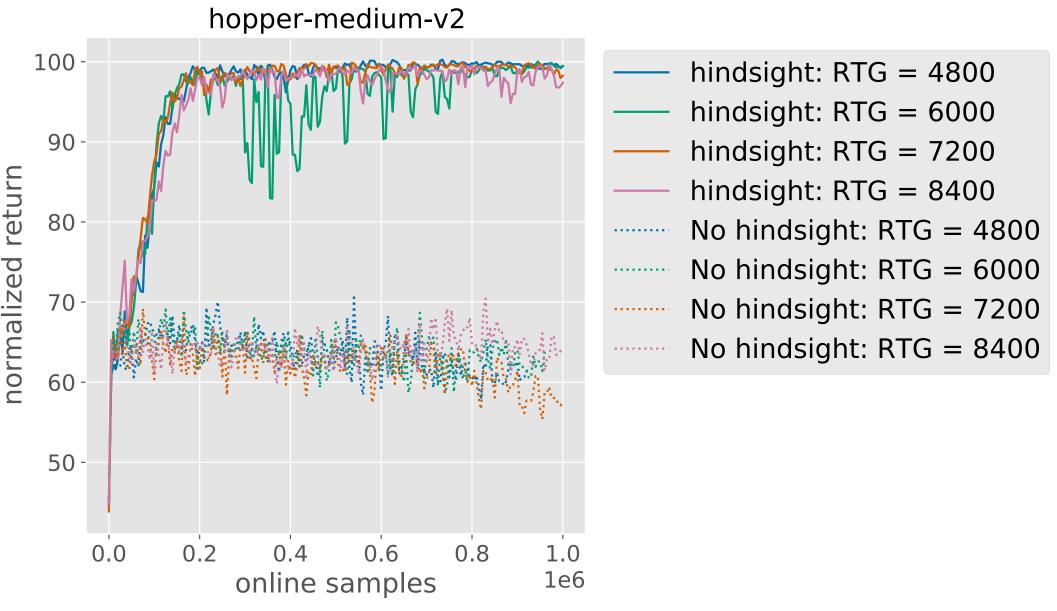
Rollout

- 1. Specify the desired return g_1 and an initial state s_1 .
- 2. Generate a_1 , execute it and then observe s_2 and r_1 .
- 3. Compute $g_2 = g_1 r_1$. Now we can generate a_2 .
- 4. Repeat until the episode terminates.

	Online Decision Transformer
021) odeling	Stochastic Policy $\pi_{ heta}(a_t \mathbf{s}_{-K,t}, \mathbf{g}_{-K,t}) = \mathcal{N}(\mu_{ heta}(\mathbf{s}_{-K,t}, \mathbf{g}_{-K,t}))$
	Generate action based on recent K states
est	Max-Ent Sequence Modeling
ithm	$\min_{\theta} J(\theta) \text{ subject to } H^{\mathcal{T}}_{\theta}[\mathbf{a} \mathbf{s}, \mathbf{g}] \\ - J(\theta) \text{ negative log-likelihood of sequence}$
	$J(\theta) = \frac{1}{K} \mathbb{E}_{(\mathbf{a},\mathbf{s},\mathbf{g})\sim\mathcal{T}} \left[-\log \pi_{\theta}(\mathbf{a} \mathbf{s},\mathbf{g})\right]$ $= \frac{1}{K} \mathbb{E}_{(\mathbf{a},\mathbf{s},\mathbf{g})\sim\mathcal{T}} \left[-\sum_{k=1}^{K} \log \pi_{\theta}(a_{k} \mathbf{s}_{-K,k})\right]$
city of	simple supervised learning, no return
	- $H_{m{ heta}}^{\mathcal{T}}[\mathbf{a} \mathbf{s},\mathbf{g}]$ sequence-level policy en
	$H_{\theta}^{\mathcal{T}}[\mathbf{a} \mathbf{s},\mathbf{g}] = \frac{1}{K} \mathbb{E}_{(\mathbf{s},\mathbf{g})\sim\mathcal{T}} \left[H[\pi_{\theta}(\mathbf{a})] \right]$ $= \frac{1}{K} \mathbb{E}_{(\mathbf{s},\mathbf{g})\sim\mathcal{T}} \left[\sum_{k=1}^{K} H[\pi_{\theta}(a_k \mathbf{s}_{-K,k})] \right]$
as	- β -dim(action)
	Offline Pretraining + Online Finetuning
	Algorithm 1: Online Decision Transform
der	 Input: offline data T_{offline}, rounds R, explorate buffer size N, gradient iterations I, pretrain Intialization: Replay buffer T_{replay} ← top N
enc	$\begin{array}{l} \mathcal{T}_{\text{offline.}}\\ \textbf{3 for } \textit{round} = 1, \ldots, R \ \textbf{do}\\ & \ // \ \text{use randomly sampled act:}\\ \textbf{4} & \ \text{Trajectory } \tau \leftarrow \text{Rollout using } \mathcal{M} \ \text{and } \pi_{\theta}\\ \textbf{5} & \ \mathcal{T}_{\text{replay}} \leftarrow \{\mathcal{T}_{\text{replay}} \setminus \{\text{the oldest trajectory}\}\}\\ \textbf{6} & \ \pi_{\theta} \leftarrow \text{Finetune ODT on } \mathcal{T}_{\text{replay}} \ \text{for } I \ \text{iterational order } I \ \text{order } I \ order$
	Algorithm 2. ODT Training
	 Algorithm 2: ODT Training Input: model parameters θ, replay buffer T_{re} iterations I, context length K, batch size B
	2 Compute the trajectory sampling probability $p(\tau) = \tau / \sum_{\tau \in \mathcal{T}} \tau .$
	3 for $t = 1,, I$ do 4 Sample <i>B</i> trajectories out of \mathcal{T}_{replay} according
	 for each sampled trajectory τ do // Hindsight Return Relate g ← the RTG sequence computed by
	rewards: $\mathbf{g}_t = \sum_{j=t}^{ \tau } r_j, \ 1 \leq t \leq \mathbf{g}_t $
	7 $(\mathbf{a}, \mathbf{s}, \mathbf{g}) \leftarrow \text{a length } K \text{ sub-trajector}$ sampled from τ .
	8 $\theta \leftarrow$ one gradient update using the same



Benchmark Comparison


dataset	ODT (offline)	ODT $(0.2m)$	$\delta_{ m ODT}$	IQL (offline)	IQL (0.2m)	$\delta_{ m IQL}$
hopper-medium	66.95 ± 3.26	$\textbf{97.54} \pm \textbf{2.10}$	30.59	63.81 ± 9.15	66.79 ± 4.07	2.98
hopper-medium-replay	86.64 ± 5.41	88.89 ± 6.33	2.25	92.13 ± 10.43	$\textbf{96.23} \pm \textbf{4.35}$	4.10
walker2d-medium	72.19 ± 6.49	76.79 ± 2.30	4.60	79.89 ± 3.06	$\textbf{80.33} \pm \textbf{2.33}$	0.44
walker2d-medium-replay	68.92 ± 4.79	$\textbf{76.86} \pm \textbf{4.04}$	7.94	73.67 ± 6.37	70.55 ± 5.81	-3.12
halfcheetah-medium	42.72 ± 0.46	42.16 ± 1.48	-0.56	47.37 ± 0.29	47.41 ± 0.15	0.04
halfcheetah-medium-replay	39.99 ± 0.68	40.42 ± 1.61	0.43	44.10 ± 1.14	44.14 ± 0.3	0.04
ant-medium	91.33 ± 4.13	90.79 ± 5.80	-0.54	99.92 ± 5.86	$\textbf{100.85} \pm \textbf{2.02}$	0.93
ant-medium-replay	86.56 ± 3.26	91.57 ± 2.73	5.01	91.21 ± 7.27	91.36 ± 1.47	0.15
sum		605.02	49.72		597.66	5.56
antmaze-umaze	53.10 ± 4.21	$\textbf{88.5} \pm \textbf{5.88}$	35.4	87.1 ± 2.81	89.5 ± 5.43	2.4
antmaze-umaze-diverse	50.20 ± 6.69	$\textbf{56.00} \pm \textbf{5.69}$	7.99	64.4 ± 8.95	$\bf 56.8 \pm 6.42$	-7.6
sum		144.5	43.39		146.3	-5.2

Baseline: Implicit Q-Learning (IQL, Kostrikov 2021) Absolute performance: ODT is comparable Finetuning Gain: ODT is much better

Ablation Study

Stochasticity is important to enable stable performance improvement in online training

collected data

 $(\Sigma,t), \Sigma_{\theta}(\mathbf{s}_{-K,t}, \mathbf{g}_{-K,t}))$ and RTGs

 $| \geq \beta$ e data

 $[k, \mathbf{g}_{-K,k})]$

optimization

entropy

 $\mathbf{a}|\mathbf{s},\mathbf{g})]]$

 $_{k},\mathbf{g}_{-K,k})]]$

Ŋ

rmer

ation RTG g_{online} , ned policy π_{θ} trajectories in

ions $T_{\theta}(\cdot | \mathbf{s}, \mathbf{g}(g_{\text{online}})).$ $\} \bigcup \{\tau\}.$ rations via

replay, training

ording to p.

abeling by the true $|\tau|.$ ory uniformly

npled $\{(\mathbf{a}, \mathbf{s}, \mathbf{g})\}$ s.

Hindsight return relabeling is critical for correcting bias in